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Abstract—As the most notably emerging wave of Internet
deployments, Internet of Things (IoTs) requires mobility sup-
port, location awareness and low latency. Fog Computing,
also termed edge computing, is a promising solution for IoTs
by extending the Cloud Computing paradigm to the edge of
Internet. But how to locate fog nodes’ sites and determine the
scale of each fog node is a main challenge of Fog Computing
systems, especially for time sensitive Fog Computing systems.
In this paper, we try to deal with this problem by proposing
an improved Fast Search and Find of Density Peaks-based
fog node location strategy to locate the fog nodes’ sites and
determine the resources for each located fog node. To this end,
we firstly formulate the fog node location of Fog Computing
systems as a clustering problem with multi-constraints. Then
we propose an improved Fast Search and Find of Density
Peaks-based fog node location algorithm, which introduces the
time sensitive feature of IoT applications and improves the Fast
Search and Find of Density Peaks clustering algorithm to make
this clustering algorithm more robustness and adaptability. The
experiment results show that our fog node location strategy not
also can avoid the NP-hard problem of the traditional server
placement strategies, but also has low time complexity.

Keywords-Fog Computing; Internet of Things; Fog Node
Location; Density Peaks clustering;

I. INTRODUCTION

With the development of electronic communication tech-
nologies, more and more devices access to Internet directly
and indirectly, which is called the Internet of Things (IoT).
In the Internet of Things (IoT) paradigm, all physical items,
also named as Things or devices, are connecting and talking
to each other with machine-to-machine communications or
person-to-computer communications[1][2]. These Internet
connecting Things speed up awareness and response to
events, leading to more output, high qualities of services and
more faster emergency response. For example, in a factory,
the imminent failure signaler on critical machines sent by
their temperature sensors will avoid a costly shutdown with
repair in time. In oil and gas exploration, pressure change
information of oil pipelines generated by sensors on oil
pipelines may slow down pumps automatically to avert a
disaster. Thus, IoT has received attentions for years and is
considered as the future of Internet. An estimated 50 billion
Things will be connected to the Internet by 2020[3]. But due
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to the limited computation/storage capacities, most of Things
can not process and store the data generated by them. To deal
with this challenge, Fog Computing is proposed to extend
the Cloud Computing paradigm to the edge of Internet by
providing elastic resources and services to Things at the edge
of network. Similar to Cloud Computing, Fog Computing
integrates all resources such as computation, bandwidth and
storage hosted on edge devices into geo-distributed service
resource pools with Network Function Virtualization(NFV)
and Software Defined Networks(SDN) technologies[4]. In
Fog Computing systems, these gro-distributed resource pools
at the edge of the network, which consist of resource-
poor devices such as set-top-boxes, access points, routers,
switches, base stations, and end devices, or resource-rich
machines such as Cloudlet and IOx, are called fog nodes[5].
With these fog nodes, the data storage and the data
processing happen outside of Things, reducing their storage
and data processing overheads. In addition, fog nodes at the
edge of the network may help to accelerate awareness and
response to events by eliminating a round trip to the cloud
for analysis, which may help to offload gigabytes of network
traffic from the core network. Obviously, the performance
of Fog Computing systems is significantly affected by the
location selection and resources allocation for each fog node.
However, due to the diversity of Things, how to locate fog
nodes’ sites and determine the scale of each fog node is
a main challenge of Fog Computing systems. First of all,
there are kinds of Things, such as sensors, mobiles and
vehicles etc.. Each kind Things has its Internet accessing
approach such as 4G-LTE and WiFi. Furthermore, each fog
node consists of a wide variety of devices, which belong
to different economic entities. For example, routers and
switches are the basic elements of Internet and belong to
their Internet Service Providers, while base stations are the
basic elements of communication networks and belong to
their communication companies. Each of these economic
entities has their own interests, which makes service cost be
the core factor of fog node construction. Thus, the diversity
of Things, devices, Internet accessing approaches of Things
as well as service cost and service performance make fog
node location an important challenge of Fog Computing.
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Figure 1.

the Fog Computing architecture

In this paper. we try to deal with this challenge by
proposing an improved Fast Search and Find of Density
Peaks-based fog node location strategy to locate the fog
node sites and determine the resources for each located fog
node. To this end, we first investigate the Fog Computing
architecture and analyze the influencing factors of fog nodes’
location. Then we formulate the fog node location of Fog
Computing as a clustering problem with multi-constraints.
Based on our fog node location model, we introduce the
MISE theory to the Fast Search and Find of Density Peaks
clustering algorithm[6] and design an improved Fast Search
and Find of Density Peaks-based fog node location algorith-
m to locate each fog node site and allocate the corresponding
resource for each located fog node for our Fog Computing
systems. Experimental results validate the effectiveness of
the proposed fog node location strategy at last.

The rest of this paper is organized as follows. The
background knowledge is presented in Section II. Section
IIT describes the proposed fog node location model and the
corresponding algorithm by using an improved Fast Search
and Find of Density Peaks method in detail. Experimental
results are presented and discussed in Section IV, and finally,
the concluding remarks are presented in Section V.

II. BACKGROUND KNOWLEDGE AND MOTIVATION

In this section, we present a brief introduction of our Fog
Computing architecture and formulate the fog node location
of our Fog Computing architecture.

A. Fog Computing

Fog Computing is a term proposed by Cisco to extent the
cloud computing paradigm from the core of Internet to the
edge of Internet to provide time sensitive services for IoT
applications, such as vehicle, smart grid and wireless sensor
and actuator networks[7][8]. Similar to Cloud Computing, it
is also a highly visualization service platform that all kinds
of resources such CPU, bandwidth and storage of different
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network devices are integrated into fog nodes to provide
computation, storage, and networking services between end
devices(Things) and traditional cloud servers[9]. Customers
can develop, manage, and run software applications on fog
nodes, as shown in Fig. 1. Fig. 1 presents a fog-computing
reference architecture, which be taken as a three tier network
structure. Tier 1 is the bottom-most layer encompassing all
Things and Thing Networks, which sense a multitude of
events and transmit the sensed data to its upper layer. Tier
2 is the Fog Computing layer, consists of geo-distributed
fog nodes, including servers and devices, such as routers,
gateways, switches, and access points etc., which are respon-
sible for processing, computing, and storing the sensed data
temporarily. Tier 3, also called as the cloud computing layer,
is the upper-most layer in this architecture, which consists
of datacentre-based cloud, processes and stores an enormous
amount of data.

Obviously, in Fig. 1, Things and Thing Networks generate
all kinds of raw data and transmit this data to its nearest
fog node. Then this data will be processed by real-time
or latency-sensitive applications implemented in these fog
nodes. All necessary and long time storage data processed
by fog nodes is gathered and transmitted to cloud computing
layer to process for business decision and store for long time,
as shown in Fig. 2. Fig. 2 shows the data processing frame-
work of Fog Computing, covering the whole ranges of time
scales from milliseconds to months. Similar to Fig. 1, this
framework is also consists of three level. The bottom level
is also the Things layer, which aims to generate raw data
and little actionable data analysis, consisting of Things and
Thing Networks and covering time ranges from millisecond-
sub seconds to sub-seconds. At this level, sensed data is
generated and exchanged among Things with machine-to-
machine (M2M) interactions. Besides, little real-time action-
able data is analyzed according to the capacities of Things
and most of the sensed data is transmitted to the second
level, the fog computing layer. The second level (seconds to
sub-hours) consists of geo-distributed fog nodes and aims to
provide most real-time and time sensitive services for Things
and Thing Networks. Besides, some local and time sensitive
decisions, such as local traffic management strategies, are
determined based on the information of different fog nodes
for stabilization of local Thing Networks. Based on the data
processing of fog nodes, important but nonsensitive business
information and history data are transmitted to the upper
layer, the cloud computing layer. At this level, information
covering a wide geographical region, such as a whole city
or even a whole country and beyond, is gathered to achieve
business decisions for enterprisers or management policies
for administrators. Obviously, by deploying a geo-distributed
fog computing layer between Things and Cloud Computing,
most of sensed data are processed in fog nodes at the edge
of Internet, which not only can reduce service latency, but
also off-loads most of Internet traffic.
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Figure 2. data analytic framework of Fog Computing

B. Fog Node Location of Fog Computing

In our Fog Computing architecture, both fog computing
layer and Thing layer are heterogeneous. At Thing layer,
there are kinds of Things, such as sensors, mobiles and
vehicles, who access Internet with different approaches.
For example, cameras, vehicles, traffic lights and sensors
in parking lots etc. are the Things of smart transportation.
Sensors form Thing networks and then access Internet, vehi-
cles may access Internet through WiFi or base station, even
some vehicles form Thing networks to access Internet while
cameras and traffic lights may access to Internet directly.
At Fog Computing layer, in order to provide low latency
and location awareness services for all kinds of Things
and Things Networks, various kinds of Internet devices
and servers used to provide more storage and computation
capacities are involved. Obviously, managing networks of
billions of heterogeneous devices, which run one or more
services and serve Things and Things Networks flexibly and
effectively, is incredibly challenging and complex.

A potential and intuitive solution for this challenge is to
divide Things into Thing clusters and integrate devices into
virtual fog nodes according to Thing clusters. To this end,
Things and Thing Networks are classed into geo-distributed
clusters with clustering algorithms, then all resource of the
service devices and servers for each Thing cluster are inte-
grated into one virtual fog node with emerging techniques,
such as SDN and NFV. At last, P2P technologies are applied
to these geo-distributed fog nodes to form a fog computing
network, which allows fog nodes cooperating better and
fog computing networks more scalable. However, fog nodes
consist of various kinds of Internet devices. The owners of
these devices are independent from each other and pursue
their own profits. Thus, service cost is an important factor
for fog node location of Fog Computing. Besides, there
are some applications running on each fig node, which
means fog nodes should provide unique quality of service
to Things for each application. Thus, Fog Node location
of Fog Computing can be formulated as a clustering-based
multi-constrained optimization problem.
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III. FOG NODE LOCATION STRATEGY OF FOG
COMPUTING

In this Section, we describe our fog node location strategy
of Fog Computing in detail. To this end, we first model
fog node location, then an improved Fast Search and Find
of Density Peaks-based fog node locating algorithm is
proposed.

A. Fog Node Location Model

As discussed in Section ILB, the fog node location is
a clustering-based multi-constrained optimization problem.
Considering one Fog Computing system with N Things,
Thing ¢ requires storage resources rs; and computation
resourcesrc; to satisfy its service. To simplify our model,
we assume that all Things have the same maximum response
latency M Del and can be served by P virtual fog nodes.
Fog node Nod, has M kind of devices K Dev, in which
the number of kind of devices KDev,m is L,m. Let
device Dev,mj denote the jth device of kind m, del,p,;j;
mean the service delay that the jth device serves Thing
¢ and its service resources with the unit resource cost
Cpmyj = {Cspymyj,Ccymj} is Rymj = {Rspymyj, Repymyj},
where Rs means storage resources, Rc denotes computation
resource, C's presents the unit resource cost of Rs and Cc
presents the unit resource cost of Rc. Then the fog node
location can be formulated as follows:

P M Lpm N P M Lpm

min : kl * Z Z Z Z delpmjifbi + kz * Z Z Z Cpijpmj

p=1m=1 j=1 i=1 p=1m=1 j=1

z; = 1,if Thingiis served, otherwise, x; =0

s.t. delpmji S M Del
[Zz}::l Z%:l ngln CpmJ'Rpmj} 2 Ezj\; (rsi +rci)
M
P M Lpm =N
where szl Dot i) > ieq delpmjiz;  denotes
the total resources TR of Fog Computing and

Zle M Zf:f CpmjRpm; denotes the total cost
TC for these resources. In fact, unit resources’ cost of
one kind device is different from that of other kinds,
even the cost of the same kind device at one location
is different from that of other locations. But at the
same location, the resource capacities and unit resources
cost of each kind is really the same. Then, the total
resources TR and resource cost T'C’ of this fog node
can be described as 25:1 Zf\:{:l vazl L, delym;x; and
25:1 M LnChmRym oM Li % C; % R; respectively.

Since both devices and servers of one fog node and Things
served by this fog node are at the edge of Internet, it is
reasonable to consider that the service scale of this fog
node is homogeneous. As a result, the bandwidth resources
between each fog node and its serving Things are unlimited,
the response latency of one fog node is the linear function of

Authorized licensed use limited to: Wuhan University. Downloaded on October 23,2022 at 05:20:41 UTC from IEEE Xplore. Restrictions apply.



the distance between this node and its Thing. Furthermore,
all resources of devices and servers, which serve one Thing
cluster are integrated into a virtual fog node. In addition, fog
nodes always use the most “suitable” device to response one
Thing’s request and each kind of devices has the same unit
resource cost. Therefore, the resource cost of devices can be
replaced by Things. That is to say, the property of service
cost for one Thing is applied to substitute its service resource
cost, including storage service cost and computation service
cost. In our paper, we let a virtual fog node with all kinds of
resources replace these geo-distributed devices and servers
to serve Things and Thing Networks. The service latency
can be described as the distance between this fog node
and its serving Thing. After normalizing service resource
and resource cost of all Things, fog node location can be
redescribed as follows:

Considering a Euclid space with N points, each point
denotes one Thing. The resource and resource cost, which
are used to serve this Thing, are considered as the properties
of this point. Then these points are clustered as several
clusters to minimize the weighted distance between these
points and their clusters centroid. Besides, all clusters should
meet the constraint that the distance of each point to its
cluster centroid is less than the threshold, shown as follows:

M M M M
min : kp Z Z d;y;;Cix; + ko Z Z Lijyij
i=1 j=1 i=1 j=1
TiyYij € {0, 1}
s.t. L;j = d;Dy; )

(L] = DThr

where k; and ko are weights of object and k1 + ko = 1, ;
denotes the point selected as a virtual fog node, y;; means
the point j served by virtual fog node ¢, L;;, which should
satisfy the service quality of point, that is, L;; > DThr,
is the service latency when fog node 7 serves point j.
Obviously, Eq. (2) is a NP hard problem. Thus, we propose
an improved Fast Search and Find of Density Peaks-based
fog node location algorithm to deal with this problem.

B. Improved Fast Search and Find of Density Peaks-based
Fog Node Location algorithm

Essentially, Fast Search and Find of Density Peaks algo-
rithm is a fast clustering algorithm. Clustering is a division
of samples into groups of objects similar in some metrics
such as distance or similarity, and well investigated for its
wide variety flied including Marketing, Computer, Biology
and Libraries etc.. Generally, clustering algorithms can be
classified as Partitioning Relocation Clustering, Hierarchical
Clustering and Other Clustering Techniques. Hierarchical
clustering builds a cluster hierarchy, also known as a dendro-
gram or a tree of clusters, including agglomerative (bottom-
up) and divisive (top-down)[10][11]. Partitioning algorithms
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divide data into several subsets with greedy heuristics,
which consists of Probabilistic Clustering[14], K-Medoids
Methods[12] and K-Means Methods[13]. Besides Partition-
ing Relocation Clustering and Hierarchical Clustering, there
are some other clustering algorithms proposed, such as the
cluster algorithms based on Fuzzy Theory[15], clustering
algorithms based on Graph Theory[17] and Density-based
clustering algorithms[16] etc.. Recently, Clustering was in-
troduced to avoid the NP hard problem of traditional server
placement strategies [18][20], such as NetClust[21]. Net-
Clust proposed a K-means-based clustering server placement
sites determination algorithm to select the server placement
sites for large scale service platform, such as Cloud com-
puting and datacenters. It clustered the points N into M
clusters and achieved the centroid for each cluster as the
server placement sites. Although K-means cluster algorithm
is simple and carried out easily, it has the time complexity
of N(NKI) affected by the initial centroid selection. To
overcome this problem, we introduce the Fast Search and
Find of Density Peaks clustering algorithm and propose an
improved Fast Search and Find of Density Peaks-based fog
node location algorithm.

The Fast Search and Find of Density Peaks clustering
algorithm was proposed by A. Rodriguez and A. Laio in
2013, which was based on the idea that cluster centers
are characterized by a higher density than their neighbors
and by a relatively large distance from points with higher
densities[6]. According to these two characters, two proper-
ties of data points: 1) p; and 2) §; were defined and clustering
algorithm is designed. In this algorithms, p; means the local
density of point ¢, which can be calculated as follow:

N
pi=Y  X(dij —d) 3)
=1

where d;; is the distance between point p; and pj, d. is the
cutoff distance.
Based on p;, d; also defined as :

.

Eq. (4) shows that J; denotes the distance of data point i to
closest higher dense point.

Obviously, p; is the number of points closer than d.
to point ¢, which shows the probability of point i as the
cluster center from a local perspective, while J; means
minimum distance of point 7 and a nearest high-density
point, which describes the probability of point ¢ as the
cluster center globally. Then p; and d; are plotted to select
points as the cluster centers through manual manners. After
achieving clusters centers, other points are assigned to the
nearest cluster in a single round accurately. However, due to
cluster centers determined by manual, this algorithm is not
carried out automatically. Besides, there is no reasonable

min(d;j)
maz(d;j)

if 3 j, s.t: Pj > Pi

if 37, s.t: p; < p; “)
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decision strategies for the cutoff distance d., which affects
the efficiency of this algorithm significantly. On the other
hand, Egs. (3) and (4) show that the Fast Search and Find
of Density Peaks clustering algorithm also belongs to the k-
ernel density estimation approach, which always implements
Mean integrated squared error (MISE) as quality estimation
criteria for optimal choice of smoothing parameter. In fact,
Mean integrated squared error (MISE) has been investigated
for independent and identically distributed random variables
by Z. 1. BOTEV[19]. Due to the huge amount of Things
and random access to the mobile Things, it is reasonable to
conclude that these [V points are independent and identically
distributed in the Euclid space. Therefore, we implement
Mean integrated squared error (MISE) to improve the Fast
Search and Find of Density Peaks clustering algorithm,
which is given below:

MISE) =By [0 - j@lde ©)
In fact, Eq. (5) is conveniently decomposed into integrated
squared bias and integrated variance components, which can
be described as follows respectively:

MISE(®) = [ (E(f(@it) - @) Pdo+ [ var(faioldr

(6)

Eq. (6) shows that the integrated squared bias of Mean
integrated squared error (MISE) can be described as the
expectation of random sample and the integrated variance
can be denoted by the standard deviation of random sample.
On the other hand, the Fast Search and Find of Density
Peaks clustering algorithm considers that a cluster center has
higher p and large § than non-center data-points. However,
there always exists phenomena that a single cluster contains
more one density peak. In this case, each different density
peak can be considered as a potential cluster center, which
makes it difficult to select the exact number of clusters, so
the decision graph is plotted to assist the appropriate cluster
center selection. Therefore, we introduce Mean integrated
squared error (MISE) to Fast Search and Find of Density
Peaks clustering algorithm to improve its efficiency. To this
end, we firstly calculate the mean E(d) of all distance and
let d. = 0.2 % E(d). Then Eq. (3) can be transferred as:

N

pi =Y X(dij — 0.2 E(d))
=1

)

Based on Eq. (7), the mean E(p) and the standard
deviation o () can be calculated, which denote the integrated
squared bias and the integrated variance of the cluster center
respectively. Then F(p) and o(d) can be implied to select
the appropriate cluster centers with the follows inequalities.

EC; > E(p;) (®)
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Del; > o(6;) ®

Egs. (8) and (9) show that local cluster centers are the data-
points with larger distance and higher densities as compared
to the neighbors data-points. Obviously, Egs. (7), (8) and
(9) can be implemented to determine the cluster centers,
which is based on the properties and location of points
without the specific distance constraint. But each Thing of
fog computing systems has its tolerable response delay. Thus
we design our improved Fast Search and Find of Density
Peaks-based fog node location algorithm based on Egs. (7),
(8) and (9) and the specific distance constraint, shown in
Algorithm 1.

Algorithm 1 Improved Fast Search and Find of Density
Peaks-based fog node location algorithm.
Input:
The Number of Things, V;
The service resource and unjoint resource cost for Thing
i, r; and ¢;;
The location of Thing ¢, p;;
The minimum maximum latency of Things served by
fog nodes, dmin,;
Output:
The number of Clusters, M;
The location of Cluster 7, C'P;;
The service Things’ number of Cluster i, L;;
The total service resources of Cluster i, T'S;;
The total service cost of Cluster i, T'C;.

1: Calculate the distance of each pair points d;j;
Calculate the mean E(d) of distance d,; and get d, =
0.2 E(d);

3: Calculate p; and ¢; with Egs. (7) and (4) respectively;
4: Calculate FE(p) and o(9);

Achieve cluster number and their centers by implement-
ing Egs. (8) and (9);

Achieve cluster number and their centers by implement-
ing Egs. (8) and (9);

Assign remaining points to each cluster center and
calculate their service distances;

Repeat Step 3 to Step 7 till all service distances below
dmin;

return M, CP;, L;, T'S; and TC;;

In Algorithm 1, Step 1 aims to obtain the weighted
distances of each pair points in the given Euclid space, in
which the service resources and the corresponding service
cost of each point are normalized, then they are attached
to its distance as the weights. Step 2 calculates the cutoff
distance which determines the data set size of the potential
cluster centers and affects the efficiency of our location
algorithm. Step 3 to Step 8 is the core of our location
algorithm, which determines the location, service resources
and service cost of each fog node through iteration. Step 3 to
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Step 7 choose the candidate locations based on Egs. (4), (7),
(8) and (9), then these candidate locations are tested with
dmin, which denotes that all Things should be served with
satisfied service quality, by the Step 8. If the delay constraint
is not satisfied, the candidate locations can’t be taken as the
point set of the potential cluster centers and Step 3 to Step 8
will be carried out again. This process should be carried out
again and again till the delay constraint is satisfied. Based
on the selected cluster centers, Step 9 returns the location of
each selected fog node as well as its service resources and
cost for these resources.

IV. EXPERIMENTS
A. Experiment Establish

To evaluate the efficiency and performance of our pro-
posed method, clusters created by Improved Fast Search
and Find of Density Peaks-based fog node location algorith-
m(IFSFDPFNL) are compared to K-means and Integrated
Optimization Problems(IOP) described as Eq. (1). Both K-
means and IOP are applied to server placement and in-
vestigated well. K-means-based server placement strategies
is introduced for large scale applications such as cloud
and datacenters[21] while Integrated Optimization is always
applied to model traditional server placements, which for-
mulate the traditional server placements as an optimization
problem with different metrics, for example, service delay
and deployment cost etc.. In our experiment, these three
algorithms are implemented in the same Euclidean sample
space with the same points, which are denoted as Things of
Fog Computing systems. Each Thing is attached two values
between 0 and 1. One value aims to simulate thing’s required
resources, which are generated randomly in our experiment.
The other value is used to denote the service cost for unit
resource if this point is selected as the fog node. According
to the results of the previous work, there is no significant
difference of the service costs for unit resource in certain
area[22]. Therefore, we divide the sample space into 25
subspace evenly and generate a value between 0 and 1 as
the unit resource service cost for one each subspace. In
addition, since fog node is virtual service node consisting
of devices and servers, any location in the sample space
selected by fog node location algorithm can be considered
as a fog node. Thus, for each fog node, the unit resource
cost is determined by its location. Due to the features of
independence and randomness of Things, each of them can
be considered as a random point. Thus, we use a set of
pseudorandom samples to imitate them, which are generated
with mean 1 and standard deviation 100. The sample number
increases from 5000 to 10000 with step of 100. Since the
algorithm time complexity of K-means is greatly influenced
by the initial centroid selection, we set a time threshold of
successful clustering with 200s. That is to say, when the
server selection time is less than 200s, we consider this
k-means clustering is successful, vice versa. To eliminate
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the impact of the initial centroid selection as possible, we
repeat these two experiments 10 times and get the average
clustering time of successful server selection.

B. Performance Evaluation

Fig. 3 plots the time efficiency of different fog node
location algorithms with 5 fog nodes. In Fig. 3, the blue
solid curve denotes the fog node locating time of our
proposed algorithm of IFSFDPFNL while the green dotted
and red point curves show the fog node locating time of
Integrated Optimization Problems(IOP) and K-means cluster
algorithm respectively. From Fig. 3, we can find out that
our selection algorithm achieves the best time efficiency
while the Integrated Optimization Problems(IOP) has the
worst time efficiency among these three algorithms. The
time efficiency of K-means is far more efficiency than IOP
and similar to our IFSFDPFNL algorithm at sometimes.
But this does not mean that its time efficiency is similar
to our IFSFDPFNL algorithm because some unsuccessful
clustering data is excluded in our experiment results. Due
to the inappropriate initial cluster center selection, the time
efficiency of K-means fluctuates intensely, which is shown
clearly in Fig. 3. In fact, Fig. 3 also shows that the time
efficiency of K-means is the most fluctuating among these
three algorithms.

Fig.4 shows the service performance of different fog node
location algorithms. Similar to Fig. 3, the blue solid curve
of Fig. 4 denotes the average service delay of our proposed
algorithm of IFSFDPFNL while the green dotted curve
shows the average service delay of Integrated Optimization
Problems(IOP) and the red point line presents the service
performance varying with the Things’ number increasing
with K-means cluster algorithm. It is clear that our s-
election algorithm achieves the best service performance
among three algorithms while the Integrated Optimization
Problems(IOP) have the worst service performance among
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these three algorithms in Fig. 4. Different from Fig. 3, the
service performance curve of our IFSFDPFNL algorithm is
smoother than the other service performance curves while
the time efficiency curve of IOP is smoothest among these
three time efficiency curves in Fig. 3.

Fig.5 shows the average service cost difference of selected
fog nodes for different fog node location algorithms. In
Fig. 5, we can find out that although the average service
cost of K-means is slightly smaller than our IFSFDPFNL
algorithm and IOP wholly, there is no significant service
cost difference among these three algorithms. What’s more,
due to the fluctuating of these three curves, it is unfeasible
to claim that K-means clustering algorithm can achieve the
less average service cost than the other algorithms.

Comparing with Fig. 3, Fig. 4 and Fig.5, we can find that
1) K-meams clustering may achieve the worst robustness
results among these three fog node location algorithms.
Both Fig. 3 and Fig. 4 show that the curves of the other
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algorithms is smoother than the corresponding curve of
K-means and Fig. 5 shows that there is no significant
fluctuation difference among these three curves; 2) our
proposed algorithm achieves the best service performance
and best time efficiency while IOP algorithm get the worst
service performance and time efficiency among these three
algorithms. Obviously, comparing with the other algorithms,
our proposed algorithm can achieve the high service perfor-
mance and time efficiency while the average service cost
achieved by it is not significant increasing than the other
algorithms. Therefore, it is a effective algorithm to locate
the fog nodes for Fog Computing systems.

V. CONCLUSION

This paper addresses the fog node location of Fog Com-
puting. To this end, we first formulates it as a clustering-
based multi-constrained optimization problem. Then an Im-
proved Fast Search and Find of Density Peaks-based fog
node location algorithm is proposed to achieve suitable fog
node sites and allocate the resources and service cost for
each located fog node for our fog node location model. Our
proposed fog node location not only integrates the metrics
of service quality and service costs, but also guarantees
the service quality for all Things. The experiment results
show that comparing with the traditional K-means cluster-
ing and Integrated Optimization Problems server placement
algorithms, our proposed fog node location algorithm can
achieve the best service performance and best algorithm time
efficiency without too much service cost increasing, it is a
effective fog node location algorithm for Fog Computing
systems.
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