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Abstract: In this paper, we propose a fast server placement algorithm to improve the NetClust framework and make it

more efficient and flexible. To this end, we introduce hierarchical clustering technologies to the NetClust framework and

propose a flexible server placement algorithm, which integrates the agglomerative and divisive clustering technologies

to reduce the time complexity and avoid the performance fluctuation affected by the initial node selection. The

experiment results show that our server placement algorithm may reduce the time complexity of server selection of

NetClust significantly and improve the flexibility and applicability of the NetClust.
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1. Introduction

Server placement, which is always implemented to reduce service delay, balance network traffic, improve service

reliability, and disperse flash crowds, is an important topic of distributed systems, such as P2P and CDN

[1,2]. However, most works formulate it as an NP-hard problem, which suffers from several limitations of

passive selection and poor scalability. To deal with these limitations, NetClust, a server placement framework,

was proposed by Yin et al. [3]. In NetClust, the network coordination technologies provide the entire

topological information for the server placement model with low measurement cost, and the K-means-based

cluster technologies may select the suitable servers proactively. Thus, it is a practical server placement solution

for large-scale applications such as datacenters or clouds. However, it is not suitable for some emerging

technologies and applications, such as the Internet of things [4] and virtual reality. For example, micro and

small companies lease the resources of geodistributed clouds to construct their service platforms for some online

virtual reality games [5]. Due to the financial limitation of these micro and small companies and the pay-as-

you-go model of the cloud, they may change their cloud service resource rental strategies, including the location

of clouds and the resource capacities for end users. In this scenario, the server placement strategies not only

should select the suitable servers from a large range of options, but they also must have good adaptability for the

changes of end users. However, due to the time complexity O(N3) of the server selection algorithm, NetClust

is only carried out offline and does not yield the excepted performance. Thus, it is necessary to develop a server

placement algorithm to adapt to this scenario.

This paper aims to deal with this problem by proposing a flexible server placement algorithm (FSPA) for
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the NetClust framework, which can achieve good adaptability of server placement and is suitable for emerging

applications. To this end, we first describe and investigate the NetClust framework, including the advantages

and disadvantages. We then propose the FSPA, which is based on hierarchical clustering technologies and

integrates the merits of the agglomerative and divisive clustering technologies to reduce the time complexity

of server placement algorithm significantly. Finally, we evaluate and verify our server placement algorithm by

comparing the server placement performance and service performance of our algorithm to the K-means-based

algorithm with a carefully designed experiment. The results show that our server placement algorithm not only

reduces the server selection time significantly but also avoids the performance fluctuation affected by the initial

node selection. It is a flexible server placement and suitable for emerging applications.

2. Related works

2.1. Server placement

There have been significant works on server placement and mirror replicas for distributed systems since Li et al.

[1] proposed their placement algorithm for web proxies on the Internet. They formulated it as a facility location

problem and proposed dynamic programming to find the optimal solution with computational complexity of

O(N3M2). Jamin et al. studied the performances of different placement strategies and found that increasing

the number of mirror sites was effective in reducing client download time and server load [6]. Cameron et

al. presented an approximate model for dense clients and servers and proposed a simple server allocation and

placement algorithm based on high-rate vector quantization theory [7]. Xu et al. [8] focused on replication

proxy and data replica placement in a network with the maximum number of proxies to minimize the total data

transfer cost. Ahuja and Krunz formulated the server placement problem as a mixed-integer linear programming

formulation and an efficient heuristic solution for the SP problem [9]. Yuan et al. [2] focused on the server

placement of P2P for live streaming and proposed a server placement strategy for edge servers of CDN-P2P.

Zhang and Tatipamula focused on intelligent server placement for social networks and proposed three scalable

server placement strategies to select server locations among all the possible locations with less cost of interuser

data sharing [10]. Chaisiri et al. formulated virtual machine placement as a stochastic integer programming

problem and proposed an optimal virtual machine placement algorithm, which minimized the cost expenditure

in each plan for hosting virtual machines in a multicloud provider environment under future demand and price

uncertainty [11]. Zhang et al. presented a framework for dynamic service placement based on control- and game-

theoretic models and proposed a coordination mechanism to maximize the social welfare of the system [12]. Jin

et al. focused on the multidimensional stochastic VM placement problem and proposed a polynomial time

algorithm to maximize the minimum utilization ratio of one server’s resources [13]. Mijumbi et al. formulated

the server placement as a binary integer linear program and proposed a greedy approximation [14]. Zhu et al.

studied cloudlet placement and formulated the cloudlet placement as integer linear programming [15].

However, most works formulate it as an NP-hard problem, which suffers from several limitations of passive

selection and poor scalability. To deal with these problems, Hao et al. introduced clustering technologies and

proposed a cluster-based server placement framework, NetClust [3]. Xiang et al. then proposed an adaptive

cloudlet placement, which is also based on K-means clustering and adapted mobile users [16]. However, since

the clustering time of K-means clustering is significantly affected by the location of initial centroids, these K-

means-based server placement methods cannot yield their results within their expected clustering time. Thus,

it is necessary to develop a flexible server placement with less time complexity.
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2.2. Clustering technologies

Clustering is a division of samples into groups of similar objects with some metrics such as distance or

similarity and it is well investigated for a wide variety of fields including marketing, computers, biology, and

libraries. Generally, most clustering algorithms can be classified as partitioning relocation clustering, hierarchical

clustering, or other clustering techniques. Hierarchical clustering builds a cluster hierarchy or, in other words,

a tree of clusters, also known as a dendrogram, including agglomerative (bottom-up) and divisive (top-down)

methods [17]. Partitioning algorithms divide data into several subsets with greedy heuristics in the form of

iterative optimization, which consist of probabilistic clustering [18], K-medoids methods [19], and K-means

methods [20]. Besides partitioning relocation clustering and hierarchical clustering, some other clustering

algorithms have been proposed, such as the clustering algorithms based on fuzzy theory [21], or clustering

algorithms based on graph theory [22] and density-based clustering algorithms [23]. The basic idea of fuzzy-

based clustering algorithms was the continuous interval [0, 1] label to describe the belonging relationship among

objects. The density-based algorithms classed the samples in regions with high density of data space into the

same cluster [24,25].

3. NetClust overview

The NetClust framework was proposed to deal with the problem of traditional server placement, such as

unscalability and high cost for information gathering. It consists of three components: a measurement engine, a

network construction engine, and a placement engine, as shown in Figure 1. The measurement engine applied a

lightweight ping method to the destination IP list and got the measurement delay data with little measurement

overhead. The network construction engine uses the measurement data as input to construct a GNP-based

network coordinate, which is used to predict the pairwise latency between all clients, including landmark

selection and network coordinate construction. Based on this constructed network coordinate, the placement

engine is used to determine the suitable server placement locations and allocate corresponding network resources

for each selected server. To overcome the challenge of the unscalability of existing server placement solutions,

NetClust applies a K-means-based clustering algorithm to classify users into different groups, which determines

the locations for each server proactively. Then a stable-marriage algorithm is proposed to select the server for

each user, which is applied to allocate network resources such as computation, storage, and/or bandwidth.
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Figure 1. The framework of NCBSP.

Obviously, K-means takes advantage of the idea of partitioning to get the clusters with the iteration,

which can find the server deployment location proactively while avoiding the NP-hard problem of traditional

server placement solutions. Thus, by applying the technologies of the GNP-based network coordinate, K-means

clustering, and stable marriage, NetClust not only can gather the global Internet topology information with

low measurement cost but can also select the suitable server deployment sites globally and proactively. It is an
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effective solution for a large range of Internet application systems, such as datacenter or cloud constructions,

but it is not suitable for some emerging applications such as virtual reality games, data analysis, and processing.

By applying a pay-as-you-go business model and VM technologies, the service platforms for these applications

can be constructed with multicloud resources, but most of these emerging applications are time-sensitive, which

means that their server placement strategies should be flexible enough to meet the financial and application

requirements. Unfortunately, although NetClust can achieve the “optimal” server placement strategy for large-

scale systems globally and proactively, the time complexity O(N3) of its server selection algorithm makes this

static deployment strategy work only offline. Furthermore, its user-matching and resource allocation strategies

are based on the interaction between users and servers, which is also not suitable for the service of online virtual

reality games. Thus, it is necessary to improve the server selection algorithm to adapt the randomness and

mobility of mobile terminals.

4. Improving the server selection strategy

In this section, we propose our strategy for improving server selection based on NetClust. To this end, we first

investigate the server selection algorithm and a strategy improving server selection is designed to overcome the

shortcoming of NetClust.

4.1. Server placement algorithm of NetClust

The server placement framework of NetClust consists of the server site selection algorithm and resource allocation

algorithm, as shown in Algorithm 1 and Algorithm 2, respectively. In Algorithm 1, the classical K-means

clustering algorithm is applied to cluster the points N in network coordinates and achieve the centroid for each

cluster, as shown in Steps 2–5. Based on these selected servers, Algorithm 2 is proposed to map each end user

to its corresponding server and allocated resources for each selected server based on a stable match algorithm.

Algorithm 1 A cluster-based server placement algorithm

Start;

1: Input: Coordinates of N points, the number of clusters K , and the number of candidate server location J ;

2: Initialize the cluster centroids µ1 , µ2 , µ3 , . . . ,µn ;

3: Assign each of theN points to a cluster whose centroid is closest to the point;

4: Update the new cluster’s centroids µi , i = 1, 2, 3,. . . , K ;

5: Repeat Steps 3 and 4 until the membership of each cluster does not change;

6: For each cluster i , generate the set ofJ points that have the lowest placement cost; denote this set by Si ;

7: For each clusterj , select a location from set Si , which is closest to its centroid µi ; the selected location is

denoted by µp i ;

8: Output: Pareto optimal server locations µp i , i = 1, 2, 3 . . . , K ;

The K-means clustering algorithm is one of the simplest clustering algorithms and can be carried out

easily, but its time complexity of N(NKI) is affected by the selection of the initial centroids, which means that

the computing consumption of server selection varies with the start selection of the centroids significantly. Thus,

this algorithm is not suitable for scenarios in which beginners start their businesses by constructing their service

platforms with the resources of geodistributed clouds. Algorithm 2 takes the quality of service of users and
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Algorithm 2 Client/server matching algorithm

Start;

1: Input: server locations x i , i = 1, 2, 3,. . . , K , the capacity of each server;

2: Initialize the clients’ preference lists and servers’ acceptance lists;

3: For each client, assign the client to the server, which is at the head of the preference list of the client;

4: For each server, sort the clients in its request list, in the same order as that of the acceptance list of the
server;

5: For each overloaded server, remove the clients that are located at the tail of the request list of the server

until its workload is not greater than its capacity;

6: Repeat Step 3 for the clients that are not assigned to any server, Step 4 for the servers with newly assigned

clients, and Step 5 for overloaded servers, until each of the clients is assigned to a specific server;

7: Output: the client/server matchings listed the request lists of all servers;

the quality of service of servers into account and provides a solution for beginners to construct their service

platform with a server placement strategy. However, due to financial restrictions and profit pursuing, these

beginners may opt to apply a flexible server placement strategy with low time complexity to adapt the change

of users dynamically. The time complexity O(N3) of Algorithm 2 makes the resource allocation algorithm

of NetClust run only once a day or even longer. Furthermore, the server placement strategy is based on the

fact that each server’s capabilities are fixed and limited after deployment. This is not suitable for our server

placement scenarios due to the pay-as-you-go business model of clouds. With this business model, beginners

can get enough resources from their selected clouds, so the resource allocations strategy of our server placement

should be based on the resource requirement of users with low time complexity.

5. Improving the NetClust server placement algorithm

To overcome the shortcomings of NetClust, we design an algorithm for improving NetClust placement to reduce

the computation complexity, as shown in Algorithm 3. Different from K-means clustering, our algorithm

implements hierarchical clustering to class datasets, which combines geometric and nongeometric properties,

along with a cluster dissimilarity function, into binary cluster trees. Then we integrate the divisive clustering

into agglomerative clustering based on merging dissimilarity functions, which obeys a nondecreasing property:

d(i, j) ≤ d(A ∪ C,B), (1)

where d is the dissimilarity function andA ,B ,C are all the cluster names. This property denotes that if

two clusters, A andB , agree that they are each other’s best match among all the current clusters, then it is

impossible for any future grouping of the other clusters to create a better match for either of them. It means

that it is possible to build the same tree with a different order of individual nodes, so it is reasonable to achieve

subclusters by applying Ward’s clustering and the nondecreasing property. To this end, we first divide the whole

clustering space V into M subclusters with the constraint of N >> M >> K (where M = pd and d is the

dimensions of the cluster space; >> means far larger, for example c >> g means c is more than 10 times the

value of g) and we calculate the centroid for each subcluster. Based on the selected centroids, the clustering

applies a Ward’s hierarchical clustering algorithm to locate the appropriate servers, which consists of Step 2,
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Algorithm 3 Algorithm for approving NetClust server placement

Start;

1: Input: V is the space composed by network coordinates; N = the number of end users;

K = the number of the placement site;

W = the number of candidate servers;

M = the number of the initialization subspace;

2: Divide V into M subspace based on M = pd (d is the dimensions of the cluster space) uniformly, calculate

the centroid coordinate Cen i of each subspace, and let it be as the centroids of corresponding subspaces;

3: For each subcluster pair, calculate its distance by applying Eq. (2) and construct the distance matrix of

subclusters;

4: Find out the nearest subcluster pairs from the distance matrix by applying the nondecreasing property,

merge each subcluster pair into one new subcluster, and calculate the centroid of the new subcluster with
nixi+njxj

ni+nj
.

5: Repeat Step 3 and Step 4 until our hierarchical clustering tree is constructed;

6: Determine the clustering number K and the centroid of each cluster based on the hierarchical clustering

tree according to the deployment cost and (or) the user experience metrics;

7: Determine the K suitable servers from W candidate servers based on the deployment cost and (or) the

user experience metrics;

8: Allocate the service resources among these servers based on their service sample number and achieve the

logical server placement strategy;

9: Map the coordinate values of these logical servers to the IP, respectively. Then parse each IP to its corre-

sponding physical deployment site and get the server placement strategy for distributed cloud computing.

Step 3, and Step 4 of Algorithm 3. In our algorithm, the distance between each subcluster pair can be achieved

based on Ward’s linkage, which is described as:

d(i, j) =

√
2∗n i n j

n i+ n j

∥∥x i−x j
∥∥, (2)

where ∥∥ is Euclidean distance, x i and x j are the centroids of clusters i and j respectively, and ni and nj are

the number of elements in clusters iandj .

Based on these distances, we construct the distance matrix of subclusters and apply the nondecreasing

property to choose the subcluster pairs with minimal distances from the constructed distance matrix. Then

each selected subcluster pair is merged into one new subcluster in parallel. After that, the new distance of each

subcluster pair is calculated and the distance matrix with newly merged subclusters is updated according to

the distance calculating metric of Eq. (2). We repeat these steps until we get our default value, such as the

clustering number or the minimum service time. Then we determine the location of the selected servers. After

server locations are determined, all users are assigned to the nearest selected servers and then the resource

requirement for each server is calculated based on its service users, as shown in Algorithm 3.
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Our algorithm takes the client distribution density, server deployment cost, and user-experienced latency

requirements into account. By calculating the cancroid coordinate value of each set, the algorithm guarantees

the network traffic localization. Furthermore, our solution is flexible to optimize either deployment cost, service

performance, or both by choosing different metrics, as shown in Step 9 in Algorithm 3. Obviously, the cluster-

based server placement algorithm achieves the logical server placement strategy, but the servers need to be

deployed in physical sites. Thus, we should transform our logical placement locations into physical deployment

locations, which is achieved based on the mapping relationship between the delay and coordinate value, as shown

in Step 11 in Algorithm 3. As for the time complexity of Algorithm 3, Step 2 and Step 6 have the complexity

of O(N). Steps 7, 8, and 9 have the time complexity of O (KW ), O (KN ), and O(N +W ), respectively. Step

3, Step 4, and Step 5 apply a parallel subcluster merging algorithm to construct our hierarchical clustering

tree through merging each nearest subcluster pair to one new subcluster, which has time complexity similar to

Ward’s hierarchical cluster of O(N).

6. Experimental design and performance analysis

To evaluate the performance of the proposed algorithm under similar network environments, we designed our

input and simulation environment to investigate the algorithm efficiency and service performance differences of

our server placement strategy, the adaptive cloudlet placement method (ACPM) [16], and the NetClust server

placement strategy (NetClust) [3].

Figure 2 plots the time efficiency of different server selection algorithms. Figure 2a compares the time

efficiency of different server selection algorithms with fixed server number of 5 and Figure 2b shows the server

selection time of different algorithms with 10,000 end users. In Figure 2, the upper subgraph plots the server

selection time of our proposed algorithm, FSPA, while the lower subgraph denotes the server selection time of

NetClust. From Figure 2, we see that our selection algorithm is much better than NetClust when the inputs

are the same. When the server number or the end user number is fixed, the server selection time of FSPA

is much lower than that of NetClust. When the server number is fixed to 5, the maximum selection time of

FSPA is 0.22 s, while the minimal selection time of NetClust is 8.07 s with the end user number increasing from

5000 to 25,000, as shown as in Figure 2. In Figure 2, this value of FSPA is between 0.05 and 0.06, while this

value increases from 9.1 to 71.8 for NetClust when the end user number is 10,000 and the servers are changed

from 1 to 20. Figure 2 also shows that the selection time of NetClust is positively correlated with the end user

number and the server number, while this value of our proposed algorithm is positively correlated with the

end user number. With the server number fixed to 5, the selection time of NetClust is increased from 8.07 s

to 149.27 s when end user number is increased from 5000 to 25,000. This value increases from 9.18 s to 71.76

s when the servers increase from 1 to 20 while the end user number is fixed to 10,000. Figure 3 denotes the

service performance of different selection algorithms. In Figure 3, the solid and dashed curves represent the

service performances of NetClust and FSPA, respectively, where these performances are obtained when the end

user number is 5 in Figure 3a and the server number is fixed to 5000 in Figure 3b. Interestingly, we observed

that the service delay of both selection algorithms decreases with the server number increasing, following the

distribution of the negative exponent, and the convergence point can be achieved at about 10, as shown in

Figure 3b. Figure 3 also shows there is no significant difference between these two curves, which means these

two server selection algorithms have the same service performance. Figure 3a shows that both these two curves

are fluctuating between 72 ms and 78 ms.

Combining Figures 2 and 3, it is clear that our algorithm can significantly reduce the computation

consumption without too much service performance degradation. When the server number is fixed to 5 while
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Figure 2. Server selection time of different algorithms: a) server selection time with fixed server number; b) server

selection time with fixed end user number.
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Figure 3. Service performance of different algorithms: a) service delay with fixed server number; b) service delay with

fixed end user number.

the end user number increases from 5000 to 25,000, the selection time of NetClust increases by about 140 s

(from 8.07 s to 149.27 s), while this value for FSPA is just 0.144 s (from 0.0654 s to 0.209 s). When the end

user number is fixed to 5000 while the servers increase from 1 to 20, the selection time of NetClust increases by

about 62.52 s (from 9.18 s to 71.7 s), while this value of FSPA is just 0.0066 s (from 0.0516 s to 0.0582 s). On

the other hand, whenever server number and end user number are fixed, the service performances of NetClust

and FSPA have no obvious differences. When server number is fixed, the average service times of both NetClust

and FSPA fluctuate between 72 ms and 78 ms and the maximum difference between the service time of these
two algorithms is 3.2664 ms. When end user number is 5000, the value is 2.5283 ms even if the server number

increases from 1 to 20.
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7. Conclusion

As a promised solution to construct large-scale service systems, NetClust presents a server placement framework

to select suitable server deployment sites and allocates resources for each server. However, due to the high

time complexity of its server placement algorithm, this framework is not suitable for scenarios in which

micro and small beginners construct their service platforms. In this paper, we deal with this problem by

proposing a flexible server placement algorithm. Our algorithm integrates agglomerative clustering and divisive

clustering technologies to select the server deployment sites and allocate resources for each selected server quickly

and accurately. The experimental results show that our algorithm can significantly reduce the computation

consumption without too much service performance degradation. Furthermore, our server placement algorithm

can avoid the inestimable problem of server selection computation consumption, which NetClust faces during

the period of its server selection.
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