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ABSTRACT The pay-as-you-go model and network virtualization of cloud computing allow micro and
small content businesses (MSCBs) who construct their integrated cloud service platforms (ICSPs) with
virtual datacenters (VDCs) to serve their end users with low service latency and construction cost. However,
designing a flexible VDC selection strategy to meet the demands of MSCBs is a challenging task. To address
this problem, a dynamic VDC selection strategy is designed for MSCBs to construct their ICSPs flexibly
with the VDCs from different clouds. To this end, three dynamic landmark selection metrics are proposed
and applied to construct the network coordinates. Then, a dynamic VDC selection algorithm is presented
to determine the locations and service resources of VDCs, which are purchased from different clouds by
MSCBs to construct their ICSPs. Based on our VDC selection strategy, a simulator is developed based on
our designed experimental framework to evaluate our VDC selection strategy. The experimental results show
that compared with previous server placement strategies, our strategy can actively and effectively determine
VDCs’ locations and allocate service resources for each VDC with less computing consumption and is a
practical VDC selection strategy for cloud construction in a multicloud environment.

INDEX TERMS Cloud construction, geo-distributed clouds, virtual datacenter selection, resource allocation,
service node location.

I. INTRODUCTION
Cloud computing has transformed the entire Internet service
industry due to its market-oriented resource allocation
model [1], [2], which significantly reduces Internet ser-
vice providers’ cost to construct their cloud-based service
platforms for their Internet services, especially for many
latency-sensitive Internet services, such as news, video and
publishing services. Due to the large scale of their end
users, these content service providers, especially micro and
small content businesses (MSCBs), always construct their
service platforms by implementing the pay-as-you-go model
and network virtualization technologies to overcome the
shortage of funding and provide low latency service to
their end users [3]. To this end, they purchase resources
from other geo-distributed clouds, named virtual datacen-
ters (VDCs) in this paper, which have been created as virtual
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machine clusters (e.g., Amazon Virtual Cluster)1 by these
cloud providers [4]. These VDCs are integrated into MSCBs’
service platforms whose services are deployed by applying
network virtualization technologies. Then, suitable virtual
machines (VMs) of their VDCs near end users are used to
respond to requests. Obviously, VDC selection is the first step
and the pillar for MSCBs in constructing their virtual service
platforms, named integrated cloud service platforms (ICSPs),
and it directly and significantly affects the ICSPs’ construc-
tion costs and their content service delays. Thus, an efficient
VDC selection strategy is crucial to achieving ICSP low
latency content service and the success of investment in ICSP
construction.

However, most data center selection works have focused
on the data center allocation of existing geo-distributed
data centers and data center placement for large scale

1http://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-
vpc.html, online; 2019-11-20
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networks [5]–[7]. The former aims to improve the service
performance of geo-distributed data centers, such as reducing
response time and balancing a load of different data centers
by choosing suitable data centers from one service platform
to serve end users [5], [8]. The general method formulates
the data center selection as different optimal problems with
the aim of selecting M service nodes from N potential sites,
which means that servers are selected from a candidate node
pool. However, VDC selection aims to construct ICSPs,
which means that there is no existing candidate node pool.
In addition, due to the large scale of networks and the rapid
development of mobile terminals, VDC selection should
locate data centers anywhere they need to serve mobile termi-
nals. Obviously, these data center allocation models cannot
yield their expected performances for the scenario of VDC
selection in ICSP construction. In contrast to these works,
the latter aims to construct geo-distributed data center-based
service platforms for large-scale network services. Most
works implement clustering technologies to locate the sites
of data centers and actively allocate the resources for each
located site [9]. By implementing clustering technologies,
they can locate the selected data center anywhere to guarantee
their QoS, which matches the large-scale geo-distribution of
end users. However, these solutions aim to construct their
physical data center while the resources of VDCs are pur-
chased from other geo-distributed clouds. Therefore, these
solutions cannot yield their expected results for VDC selec-
tion of ICSP construction.

Obviously, due to the large-scale geo-distribution and
mobility of end users and the financial restraint of MSCB,
previous works on data center selection are not suitable for
the scenario of VDC selection of ICSP construction, and there
are challenges in addressing this problem. One obvious chal-
lenge lies in Internet information achievement, which aims
to estimate the network delays of different Internet devices,
such as end users and VDCs. Generally, both geographic
coordinates and network coordinates can be used to estimate
the network delays, but neither of themmeets the requirement
of effective VDC search due to the inaccuracy of geographic
coordinates and the time complexity of network coordinate
construction [10]. Another challenge is how to design a
lightweight VDC selection algorithm for MSCBs to actively
construct their ICSPs. To make more profit with limited
capital, MSCBs tend to adapt their selected VDCs accord-
ing to the change of end users and candidate clouds, which
means that MSCBs should choose suitable candidate clouds
pervasively with low time complexity. Unfortunately, it is dif-
ficult for existing server placement strategies to do so. First,
approximate server placement algorithms for facility location
achieve their server placement strategies passively. Regarding
the cluster-based algorithms, although these algorithms can
actively identify suitable ICSPs’ VDCs, their time complexity
or the inaccuracy of the generated server placement strategies
cannot satisfy the VDC selection of ICSPs’ construction.

To address these challenges, a practical VDC selection
strategy is proposed for ICSP construction in a multicloud

environment in this paper, where the server placement
framework of NetClust is applied to reduce the measure-
ment cost and locate VDCs pervasively. To reduce the
algorithm complexity of the GNP-based network coordi-
nate construction, three landmark selection metrics are first
presented. These metrics may help to reduce the comput-
ing consumption sharply with the excepted estimation accu-
racy of network coordinate construction. Then, a fast VDC
selection algorithm is designed to reduce the time complex-
ity of NetClust’s k-means clustering-based server selection
algorithm. Based on our VDC selection strategy and ICSP
framework, a simulation framework for VDC selection is
designed, and the corresponding simulator is developed,
which is used to imitate the cloud selection process of ICSP
construction and verify the effectiveness of our VDC selec-
tion strategy. The experimental results show that our VDC
selection strategy can significantly reduce the computing
resource consumption and locate end users to ‘‘optimal’’
VDCs. Thus, it is a practical VDC selection strategy for the
scenario whereMSCBs construct their cloud service platform
with resources from other clouds to serve their end users. The
major contributions of this paper are summarized as follows.

1) Three landmark selectionmetrics are presented and used
to construct low-dimensional GNP-based network coordi-
nates to gain global network information with low computing
consumption. Compared with the network coordinate con-
struction method of NetClust, our low-dimensional network
coordinates construction method reduces the computation
consumption sharply without degrading estimation accuracy.
In addition, it is also helpful to significantly save the storage
resources of ISCP construction for MSCBs.

2) A fast VDC selection algorithm is proposed to achieve
a VDC selection strategy for our ICSP in a geo-distributed
cloud environment. Our VDC selection algorithm integrates
the hierarchical clustering algorithm and the fast density
peaks finding algorithm, which can select the suitable VDCs
from clouds and efficiently allocate the appropriate network
resources for each selected VDC.

3) A simulation framework for the VDC selection strategy
is designed, and the corresponding simulator is developed to
verify the performance of our VDC selection strategy with
real-world data from Zhejiang Publishing United Group.2

The results show that 1) the network coordinates constructed
based on our landmark selection metrics achieve lower com-
putational and network probing costs with assured estimation
accuracy, and 2) the VDC selection strategy significantly
reduces the computing consumption compared with existing
cluster-based server placement strategies.

The rest of this paper is organized as follows. Section II
reviews related works on resource allocation of cloud com-
puting and server placement. Section III presents the system
model of ICSPs and our practical VDC selection strategy.
Section IV first investigates the details of our VDC selec-
tion strategy: the landmark selection for network coordinate

2http://www.zjcb.com/, online; 2019-11-20
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construction and the fast VDC selection algorithm. Then, our
practical VDC selection strategywith the corresponding algo-
rithm is proposed. Section V evaluates the performance of
the proposed algorithm via simulation experiments. Finally,
Section VI concludes this paper.

II. RELATED WORKS
This section describes the preliminaries and related works
on resource allocation of cloud computing and service node
placement.

A. RESOURCE ALLOCATION OF CLOUD COMPUTING
Essentially, data center selection in existing service platforms
aims to optimize the service performance of existing service
platforms, such as balancing their service load and maximiz-
ing their service profits by choosing a suitable data center
to serve end users [11], [12]. Therefore, it can be classed
to resource allocation of cloud computing. In fact, resource
allocation is a popular topic for cloud computing, and many
significant works have focused on it.

X. Wang et al. proposed a cloud service selection model
adopting cloud service brokers to assist users in efficiently
selecting their preferred cloud services. Then, a dynamic
cloud service selection strategy was proposed based on
this model [13]. R. Liu et al. proposed a mobility-aware
framework named MACSS for mobile cloud streaming ser-
vices. This framework provided dynamic and optimized
server selection functions to support user mobility [14].
A. Selvaraj et al. presented an optimizing VM selection solu-
tion called analogous particle swarm optimization (APSO)
under a cloud computing environment, which implemented
a swarm intelligence approach [15]. A. Ponraj proposed a
VM placement algorithm to minimize the computing time
and data transferring time, which considered computation
resources, quality of service (QoS) metrics, virtual machine
status, and I/O data with priority-based probability queuing
model [16]. W. Shi et al. proposed an efficient online auction
mechanism to address virtual cluster (VC) allocation and
designed a novel online algorithm for dynamic VC provi-
sioning and pricing, achieving truthfulness, individual ratio-
nality, and computational efficiency in social welfare [4].
S. B. Melhem et al. proposed a host load detection algo-
rithm to find the future overutilized/underutilized host states
to avoid immediate VM migration. Then, they proposed a
VM placement algorithm to determine the set of candidate
hosts to receive migrated VMs to reduce their VMmigrations
in the near future [17]. Xu et al. [18] developed a lightweight
interference-aware VM live migration strategy based on the
relationship between VM performance interference and key
factors of workloads. Y. Liu et al. focused on VM placement
and proposed a large number of scheduling algorithms for
VM placement to balance the performance and cost of data
center [19]. Tian et al. [20] presented a live VM alloca-
tion algorithm and a lightweight simulation system for the
algorithm.

These works cover all aspects of cloud computing ser-
vices such as VM provision, VM migration and VM clus-
tering among datacenters, and routing algorithms between
datacenters and end users. The goal of these works was to
achieve resource utilization and to make more profit for cloud
providers. All of them were based on the hypothesis that the
cloud systems have been constructed and could serve end
users, which is not suitable for the scenarios of the VDC
selection that aims to construct ICSPs.

B. SERVICE NODE PLACEMENT
In fact, service node placement is always a topic of dis-
tributed systems and has been widely concerned, from mirror
site selection to edge service node placement [21]–[23].
Among them, S. Jamin et al. studied the performances of
different placement strategies and found that increasing the
number of mirror sites was effective in reducing client
download time and server load [21]. K. Xu et al. proposed
joint optimizing approaches for replica server placement,
content caching in selected servers, and content request
load assignment among the servers to minimize the ratio of
unserved content request load when the network resources
and server capacity were both limited [22]. X. Yuan et al.
proposed a server placement model for peer-to-peer (P2P)
live streaming systems that considered the Internet service
provider friendship and peers’ contribution [24]. H. Yin et al.
focused on the server placement of large-scale stream-
ing systems and designed a cluster-based server placement
framework to deploy suitable servers [9]. C. Dong et al.
also focused on the service node placement of live stream-
ing and proposed an online algorithm to save operational
costs for CSLSPs by jointly and dynamically choosing
the correct data centers for broadcasters and viewers [7].
Y. Zhang and M. Tatipamula focused on server placement
for social networks and proposed three scalable server place-
ment strategies to select server locations among all possible
locations with less cost [25]. Q. Zhang et al. presented a
framework for dynamic service placement based on control-
and game-theoretic models and proposed a coordination
mechanism to maximize the social welfare of the sys-
tem [26]. T. Do and Y. Kim proposed an optimization model
and topology-aware resource-efficient placement algorithm
(TARE), which considered the different requirements of
various high availability clusters and could be employed
to optimally deploy high availability clusters with different
redundancy configurations over geo-distributed cloud infras-
tructures [27]. H. Xiang et al. focused on server placement
and proposed a cluster-based flexible server placement to
allocate resources for edge service nodes [10].

Although the methods of these works are different from
each other, most of them can be classified into two categories.
One formulates the service node placement as a facility
location problem with the aim of selecting M service nodes
from N potential sites [21], [22], [24]. It passively selects its
service nodes from a candidate node pool, constraining its
scalability by the candidate node pool. Thus, it is suitable
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for small-scale service systems or service systems with fixed
distributed end users, e.g., wired end users. To address
this problem, clustering-based solutions have been proposed
to select and deploy service nodes [9], [10]. By applying
clustering technologies, they can locate service nodes
anywhere. Therefore, this active service node placement solu-
tion is suitable for large-scale service platform construction,
such as the platform construction of data center-based clouds
and large-scale live streaming. However, due to the financial
constraint, mostMSCBs attempt to construct their ICSPswith
fewer costs. In addition, the popularization of mobile end
users makes service node placement locate its service nodes
at arbitrary sites. Obviously, although these clustering-based
service node placement solutions can locate service nodes at
arbitrary sites, it is difficult for them to dynamically adjust
their placement strategies according to the change in mobile
users. Thus, it is necessary to design a lightweight dynamic
service node placement strategy to satisfy these features
of ICSP construction for MSCBs.

In addition to optimizing the service performance of exist-
ing service performance, data center selection is also applied
to construct service platforms, which is similar to the service
node placement in distributed systems.

III. OVERVIEW OF INTEGRATED CLOUD
SERVICE PLATFORM
MSCBs construct their ICSPs by integrating the resources of
VDCs and use ‘‘near’’ VDCs to serve end users with high
service quality, as shown in Fig. 1. An ICSP consists of three
major components: 1) VDCs; 2) Controller and 3) end users.
VDCs, selected from geo-distributed clouds based on the end
user requirements, are the resources of ICSPs and provide
end users with Internet service, which consists of all kinds
of resources from the selected clouds. In each VDC, many
VMsmay be deployed according to the requirement of ICSPs.
Controller is the central control unit of ICSPs, which
responds to construct ICSPs, and manages and monitors the
operation of ICSPs. End users obtain all types of Internet
services from ICSPs. To integrate VDC resources into ICSPs
and provide services to end users, controller determines

FIGURE 1. The system of integrated cloud service platform.

whether the ICSP construction should (re)start according to
the constraints of Eq. (a) described in Subsection IV. A. Then
it applies the VDC selection strategy to select VDCs from
geo-distributed candidate clouds and allocates appropriate
resources to these VDCs based on the information of end
users, such as the number of end users. Finally, the resources
of VDCs are integrated into the ICSP, which manages and
schedules to meet the requirements of end users.

VDC selection is the core process of ICSP construction
and directly influences the service performance of ICSPs. For
example, in Fig. 1, the strategy in which Cloud 1, Cloud 2
and Cloud 3 are chosen to construct ICSP could achieve
the minimal service delay when the unit resource of all
clouds is at the same price because these VDCs are nearest
to end users. Thus, it is necessary for VDC selection strat-
egy design to use global Internet information, such as the
location of each end user and candidate clouds. Furthermore,
limited capital requires resource consumption and flexibil-
ity to be considered when a VDC selection strategy is
designed. To address these challenges, we take advantage of
the geo-distributed feature of candidate clouds and use them
as probes to collect the end users’ information, which means
that MSCBs should reach an agreement with their candidate
geo-distributed clouds to use their resources to collect the
end users’ information whenever necessary. That is, once
the Controller determines to (re)start the ICSP construction,
it applies VDC selection strategies to select VDCs from
geo-distributed candidate clouds and allocates appropriate
resources for these VDCs based on the information of end
users, such as the number of end users. Our VDC selection
framework is designed, as shown in Fig. 2. It consists of four
components: end users, VDCs, candidate geo-distributed
clouds and a controller, as shown in Fig. 2(a). Among them,
end users are the consumers of ICSPs, and VDCs are the
virtual data centers to construct ICSPs. Of course, these
VDCs are selected from candidate geo-distributed clouds
according to the VDC selection strategy generated by the
controller. Therefore, candidate geo-distributed clouds are
the resource source through which MSCBs construct their
ICSPs, and controller is the core component where the VDC
selection strategy is generated.

FIGURE 2. The framework of VDC selection.
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Fig. 2(a) also shows that the VDC selection strategy is a
dynamic process in which VDCs and the controller should
cooperate with each other. In fact, they cooperate through
their Internet interface: the client-side interface running
in VDC, and the server-side interface running in the
controller, as shown in Fig. 2(b). In Fig. 2(b), the controller
includes a session management module, a central control
module, a monitor module, a logging module and an inter-
face server, while the VDC includes a session management
module, a logging module, a monitor module and an interface
client. In the controller, the session management module
manages the operation of other modules. The central con-
trol module implements the function of network coordinate
construction and VDC selection. The monitor module pro-
cesses the information stored in the data and determines
whether our VDC selection strategy should be started based
on the collected information. The interface server maintains
the connection to the VDC sides. The logging module col-
lects the information of ICSP operation and the network
environment conditions, preprocesses it and stores it into the
data. Similar to the controller side, the session management
module of the VDC manages and schedules the operation
of the other modules. The monitor module processes the
information stored in the data and determines the operation
condition. The logging module collects the information of
ping measurement results, and the interface client maintains
the connection between the VDC sides and the end users.
Based on this framework, the workflow of our VDC selection
can be described as shown in Fig. 2(a): when the VDC
selection strategy is triggered by some condition, such as
the overload of VDC(s) and(or) poor QoS, the monitor mod-
ule of controller sends this message to the center control
module. Then, the lists of candidate VDCs’ IPs are sent
to all candidate geo-distributed clouds through the interface
server. Once the list is received, each VDC measures the
delays to all destinations and feeds the result back to the
controller through its interface client to select the landmarks
for the network coordinate system by applying the proposed
landmark selection metrics. Then, the IP lists of all end
users and candidate geo-distributed clouds are sent to these
landmarks to gain their measurement data for the network
coordinate system construction. This measurement data is fed
back to the controller and mapped to the constructed network
coordinate system to construct the network coordinates of
all end users and VDCs, through which the global Internet
information is achieved. Finally, the center control module
uses our fast VDC selection algorithm to the constructed
network coordinate to determine the locations of selected
VDCs and allocate the resources for each selected VDC.

IV. VDCs SELECTION STRATEGY
This section aims to describe our VDC selection strategy
in detail. To this end, the VDC selection is first formulated
as an optimization problem with the aim of minimizing the
placement cost and the service delay. Then, key techniques,
that is, obtaining Internet information and the VDC selection

algorithm, which affect the performance of theVDC selection
strategy, are introduced.

A. PROBLEM FORMULATION
MSCBs apply a VDC selection strategy to determine the
location and resource requirement of each VDC and use
these VDSc to construct their ICSPs to serve their end users
with guaranteed service quality, as shown in Fig. 1. Therefore,
the ICSP’ QoS is the key factor to be considered in the VDC
selection strategy design.

As is known, service delay, which is always measured
by TTL, is the main metric of many applications, especially
for these time-sensitive applications, e.g., live streaming and
online games. Thus, in this paper, TTL is used as the quality
of the ICSP service. Additionally, because these resources are
purchased from the corresponding candidate geo-distributed
clouds, most MSCBs have limited money for constructing
their ISCPs. Thus, the deployment cost can be considered as
another metric of VDC placement.

Consider a space V consisting of all end users and candi-
date geo-distributed clouds, and both end users and candidate
geo-distributed clouds are considered as points in V , and the
number of end users isN . Then, the VDC placement of ICSPs
can be formulated as a clustering-based multiconstrained
optimization problem.

min : k1
N∑
i=1

N∑
j=1

rjyijcixi + k2
N∑
i=1

N∑
j=1

Lijyij

s.t.


xi, yij ∈ {1, 1}
Uij = 2 ∗ uij
Uij ≥ Dthr

(1)

where k1 and k2 are the weights of the optimization object and
k1+k2 = 1. That is, once oneMSCB prefers deployment cost
rather than service delay, he may increase k1. The larger k1,
the more he concern the deployment cost. k1 = 1 means that
the VDC placement aims to minimize its deployment cost
with guaranteed service quality. Uij denotes the service delay
between the ideal VDC xi and an end user xj. ci denotes the
price of unit resources of the ideal VDC xi and rj denotes the
resource demand of the end user xj. Binary variables xi and yij
indicate whether the point xi is selected as an ideal VDC, and
whether the point xj can be served by the ideal VDC xi. That
is, xi = 1 indicates that point xi is selected as an ideal VDC.
Similarly, yij = 1 indicates that the point xj can be served by
the ideal VDC xi. Constraint Uij = 2 ∗ uij denotes the service
delay between point i and edge node j, which is determined by
the distance uij between point i and edge node j, and constraint
Uij ≤ Dthr denotes that the service delay should satisfy a
given service quality Dthr .
Obviously, Eq. 1 is NP hard. According to Section II.B,

the mobility of end users makes it passively suitable
for selecting VDCs from a candidate node pool, while
clustering-based solutions such as NetClust may locate ser-
vice nodes anywhere. Although this solution is suitable
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for large-scale service platforms such as data center-based
clouds, it is not flexible enough to change end users due to
the computing complexity of the clustering algorithm and
network coordinate construction. However, due to the limited
capital, MCSBs tend to change their VDC placement strategy
according to the change in end users and the resource price
of candidate clouds to reduce their deployment cost. In other
words, the VDC placement strategy should not only locate its
VDCs at arbitrary sites but also be flexible enough to adapt
the change in end users and candidate clouds.

To address these features, we implement the placement
framework of NetClust to design our lightweight VDC place-
ment strategy, which consists of obtaining Internet informa-
tion and VDC Selection. The former aims to obtain Internet
information, including the location of end users, candidate
geo-distributed clouds and VDCs and the service delay
between each candidate geo-distributed cloud or VDC and
each end user. In Eq. 1, the service delay of two points
determined by their distance indicates that the Internet can
be mapped to a network space, which can be described
as a certain network coordinate. Then, this information of
end users, candidate geo-distributed clouds and VDCs can
be described by their corresponding point in this network
coordinate. By this network coordinate, the cluster-based
VDC placement algorithm can be mapped to the clustering
algorithm for these points in this network coordinate space.

B. OBTAINING INTERNET INFORMATION
The VDC selection strategy uses a technique for obtaining
Internet information to obtain the Internet information of the
ICSPs’ service footprints. In fact, geographic coordinate [28]
and network coordinate [29], [30] construction are currently
always implemented to obtain Internet information due to
all types of terminals. Generally, network coordinate con-
struction, including distributed network coordinate [29] and
global network coordinate [30], is the most popular method
for generating the Internet topology of terminals. Considering
the accuracy and robustness among different network coordi-
nate construction methods, the global network coordinate is
implemented to formulate the Internet topology information
of candidate clouds and end users [30]. The construction
process can be described as follows [9]:

Let V be the Euclidean network coordinate space to be
constructed, gsh denote the coordinates of a host h, and f s

denote the distance function that operates on these coor-
dinates. Then, the distance between hosts h1 and h2 can
be calculated as f s(gsh1 , g

s
h2
) = d sh1h2 . For n landmarks

La1, . . . ,Lan, the pairwise distance is uLaiLaj between Lai
and Laj, where i, j ∈ {1, . . . , n}. The error of the calcu-
lating coordinates is minimized by ferr (gsLa1 , . . . , g

s
Lan ) =∑

Lai,Laj∈{La1,...,Lan}|i>j ε(uLai,Laj , u
s
Lai,Laj ), where ε(uLai,Laj ,

usLai,Laj ) = (uLaiLaj − usLaiLaj )
2. Minimizing this function,

the optimal coordinates for the landmarks gsLa1 , . . . , g
s
Lan can

be obtained. Similarly, the coordinate for any host h can be
achieved by ferr(gsh) =

∑
Lai∈{La1,...Lan} ε(uhLai , u

s
hLai ).

In this paper, we take all candidate clouds as candidate
landmarks and use the measured inputs of these candidate
clouds to select the coordinate landmarks according to the
proposed metrics. Then, the coordinate value of each end
user and all candidate clouds are calculated based on the
delay to each landmark. Generally, one network coordinate
system consists of the coordinate origin, axes, and coordinate
units, which are determined by its landmarks. Furthermore,
the landmarks are also probing hosts, which measure the
necessary network delay of network coordinate construction
to all end users and candidate clouds’ IPs. Finally, they are the
foundation of the location of the network coordinate for each
client and candidate cloud. Thus, the first and most important
step is to select the coordinate landmarks for GNP network
coordinate construction, which significantly influences the
precision of the constructed network coordinate and the com-
puting complexity of network space mapping.

However, few works have focused on how to select land-
marks. P. Francis et al. formulated the probing host placement
problem as a graph optimization problem [31]. H. Zhang
et al. proposed a method to select landmarks from probing
servers based on three metrics: the max separation metric,
the N-cluster-medians metric, and the N-medians metric [30].
M. Rabinovich et al. found that suitable triangle landmark
selection achieved lower computational and network probing
costs with assured estimation accuracy [32]. Based on these
previous works, we propose three landmark selectionmetrics:
the max separation metric, the landmark-dimension number
metric and the landmark location metric.

1) THE MAX SEPARATION METRIC
Assume V is an L-dimensional Euclidean space composed
of network coordinates. L is the dimension of V . N denotes
the set of coordinate points in space V . i and j represent two
arbitrary hosts in space V , xi, xj are the coordinate values for
point i, j. d(i, j) denotes the distance function of xi, xj. Then,
we have the following:

d(i, j) = |xi − xj| =

√√√√ L∑
l=1

(xil − xjl)2 (2)

where xil represents the coordinate value of the lth dimension
of host i.
Let δ be the maximum measurement error of the Internet

measurement. That is, for two arbitrary hosts i and j, the
following equation always holds:

δij = |d(i, j)real − d(i, j)measure| ≤ δ (3)

Clearly, to guarantee the accuracy of the measurement,
the distance between two arbitrary landmarks must be large
enough.

2) THE LANDMARK-DIMENSION NUMBER METRIC
Generally, when constructing the network coordinate with
coordinate landmarks to build the network coordinate system,
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the following relationship between the landmark number and
the coordinate dimension always exists [30]:

N ≥ d + 1 (4)

where N denotes the landmark number and d presents the
dimension of coordinate.

3) THE LANDMARKS LOCATION METRIC
Constructing the GNP network coordinate achieves the inte-
grated Internet information, which helps to find the server
deployment locations and allocate the service resources
among these locations. Thus, the landmarksmust be deployed
in sites where more Internet information can be conveniently
collected. In fact, a point-of-presence (PoP) is the local access
point for one Internet service provider (ISP) connecting
to other ISPs. It consists of high-speed telecommunication
equipment and technologies that enable users to connect to
the Internet via their ISP. Therefore, it is an information
convergent point of the Internet and suitable for coordinating
landmark deployment.

Based on our landmark selection metrics, we select three
landmarks from all candidate clouds as the coordinate
landmarks and design the Internet information achieving
strategy as follows:

1) The controller sends the IP list of candidate VDCs to the
candidate VDCs;

2) Each candidate VDC uses the lightweight ping to mea-
sure network delays to these IPs, preprocesses thesemeasured
results, and sends them back to the controller.
3) The controller applies our coordinate landmark selec-

tion metrics to the measured data and chooses the optimal
three VDCs as the coordinate landmarks;

4) Based on the three selected landmarks, the GNP network
coordinate system can be constructed with the ping measure-
ment delay between each pair of VDCs.
5) The controller sends the IP list of the coordinate land-

marks to all candidate VDCs and end users;
6) Candidate VDCs and end users use the lightweight ping

to measure the network delay based on these IPs, prepro-
cesses this measure data and sends it back to controller as
response;

7) At last, end users and VDCs are mapped to our network
coordinate system based on their measurement delay to our
selected landmarks, through which the Internet information
can be obtained.

Obviously, this strategy for obtaining Internet information
is suitable for VDC selection due to changes in end users
or Internet conditions. That is, the ICSPs of MSCBs are
constructed and operated, and MSCBs change their VDCs
of ICSPs to adapt to the change in end users or Internet
conditions. Therefore, controller can make a suitable choice
to select few suitable candidate clouds as their candidate
VDCs from their candidate cloud lists, as shown in Step 1 and
Step 2. In fact, Step 1) and Step 2) of this network coordinate
construction aims to avoid the large time consumption of
ping processing because there are too many different clouds

to provide resources for VDC selection. In contrast, when
MSCBs start their VDC selection for the first time ICSP
construction because time consumption is not the main factor,
existing VDC selection strategies such as Net Clust may also
be applied.

C. VDCs SELECTION
Based on the Internet information obtained by the network
coordinate, a fast VDC selection algorithm is proposed to
obtain the VDC selection strategy for the ICSP.

Generally, existing server placement strategies can be
divided into active selection strategies and passive selection
strategies. The former designs a selection sever strategy by
choosing M servers from a candidate server pool passively,
while the latter applies k-means clustering to divide all end
users into several groups. Then, the placement strategy can be
determined according to Eq. 1. For example, k1 = k2 = 0.5.
That is, the VDC selection strategy aims to minimize the sum
of the deployment cost and the response time. Obviously,
the candidate server pool of the passive selection strategy
limits the service footprint of ICSP, which is not suitable for
the goal of enlarging the service footprint of ICSP. For the
k-means clustering-based strategies, because the clustering
time of k-means clustering is influenced by the selection
of initial centroids, their time complexity fluctuates signif-
icantly due to the randomness of initial centroid selection,
which leads to more computing resources reserved for ICSP
construction. Obviously, it is not suitable for the scenario of
the ICSP construction of MSCBs.

To overcome these problems, we propose a fast VDC
selection algorithm, as shown in Algorithm 1, which is based
on the hierarchical clustering algorithm and incorporates
with the fast density peaks finding algorithm [33], [34].
In Algorithm 1, the fast density peaks finding algorithm,
which assumes that a clustering center has a higher local
density than other points around it, is applied to determine
subclusters and their centroids. Then, the hierarchical cluster-
ing algorithm is used to determine the suitable VDCs. Based
on these selected VDCs, all end users are classified into the
selected VDCs according to some metrics, such as minimum
deployment cost or minimum service latency. Then, the net-
work resources are allocated to these VDCs according to the
demand of end users. Thus, our fast VDC selection algorithm
consists of achieving the subcluster centroid and clustering
and resource allocation.

In Algorithm 1, achieving the subcluster centroid aims to
quickly classify end users into some subclusters and obtain
the centroid of each subcluster, including Step 1, Step 2 and
Step 3. For each point pi, let ρi denote the local density of pi,
δi be the minimum distance from the nearest high dense point.
Then, the local density pi can be calculated as follows:

ρi =

N∑
l=1

X (dij − dc) (5)

where dij is the distance between point pi to pj, dc is the cutoff
distance, which we determine this value as 0.02. Then, δi is
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Algorithm 1 Fast VDC Selection Algorithm
Input V , the end users space composed of network coordi-
nate with the dimension d ;
m, the number of selected VDCs;
Ceni, the centroid of Subcluster i;
Start 1) For each point pi, calculate its ρi and δi according to
Equations (5) and (6), respectively;
2) Calculate the βi based on Equation (7) and choose the
centroids of the selected subclusters;
3) For each point pi, determine the Ceni which is near-
est to pi after computing the distance: Dis(Ceni, j) =
argjminmi=1|Ceni − pj|, update the Ceni with (n ∗ Ceni +
pj)/(n+ 1);
4) Calculate the average subcluster linkage and construct the
hierarchical clustering tree;
5) Determine the clustering result and the centroid of each
cluster based on the hierarchical clustering tree and the num-
ber of VDCs;
6) Choose the coordinate value of the suitable VDC for
each cluster based on the deployment cost and (or) the user
experience metrics;
7) Allocate the service resource among these VDCs based on
the number of points in each cluster and achieve the logical
VDC selection strategy;
8) Map the coordinate value of these logical VDCs to IP;
9) Parse each IP to its corresponding physical candidate cloud
and obtain our VDC selection strategy for geo-distributed
clouds.

defined as

δi =

{
min(dij), if 3 j, s.t.ρj > ρi

max(dij), if 3 j, s.t.ρj < ρi
(6)

Equation (5) describes the number of end users who are closer
than dc to pi, and Equation (6) presents the locally or globally
high density of end users. Based on Equations (5) and (6),
the probability of end users as centroids βi can be described
as:

βi =maxj∈N (ρjδj) (7)

Then, we obtain the probability of end users as centroids,
from βi list, we select the centroids of subclusters.
Based on these subclusters, clustering applies the improved

hierarchical clustering algorithm to locate the appropriate
VDCs, which consists of Step 4, Step 5 and Step 6. In our
algorithm, the average linkage metric is used to obtain the
distances for each subcluster pair. Based on these distances,
we construct the hierarchical clustering tree for our VDC
selection. By merging the hierarchical clustering tree, we can
obtain the centroids of the selected VDCs.

Finally, resource allocation allocates resources for each
selected VDC according to its deployment cost and/or its
service quality to obtain the logical VDC selection strategy
of ICSP, including Step 7, Step 8 and Step 9 of Algorithm 1.
Furthermore, resource allocation also maps this logical

strategy to the physical Internet environment and chooses
suitable clouds from all candidate clouds as the VDCs
of ICSP. To this end, the centroids of clusters are taken as
the service points, which denote the network coordinate of
the corresponding candidate clouds. Then, their deployment
cost and distances to all candidate clouds’ coordinates are
calculated, and the clouds with the minimal deployment cost
and (or) distance are chosen as the corresponding logical
VDCs. After that, we classify all network coordinates into
these logical VDCs to obtain their demanded resources and
deployment cost based on our network coordinate, which
means we achieve the logical VDC strategy. Finally, these
logical VDCs are mapped to IP and parsed to their physical
deployment sites to obtain our VDC selection strategy.

V. EXPERIMENTAL DESIGN AND
PERFORMANCE ANALYSIS
In this section, one simulator is designed based on our ICSP
framework and VDC selection strategy. Then, this simulator
is applied to evaluate the performance of our VDC selection
strategy with practical trace data.

A. EXPERIMENTAL DESIGN
Based on the trace data and our framework of VDC selection,
as shown in Fig. 2, the corresponding simulator is designed
to simulate and evaluate our VDC selection strategy. This
simulator consists of one controller and 30 candidate clouds
(candidate VDCs), which implement the same workflow of
our VDC selection mentioned in Section III. To evaluate
the performance of the proposed algorithm under a real net-
work environment, our inputs are carefully designed based
on practical content service data. These data are collected
from one content service platform of the Zhejiang Publishing
United Group, which is an integrated content service platform
and provides both traditional content service, digital content
service and online B2C e-commerce service to end users,
as shown in Fig. 3(a). In Fig. 3, the blue curve plots the
change in the number of end users of this service platform
from October 2013 to July 2017. Then, the distances from
each candidate VDC to these end users and other candidate
VDCs are calculated by its logging module according to

FIGURE 3. The user number and the relative error of different coordinate
landmark selection metrics. (a) The end user number of content service
platform. (b) The relative error of different coordinate landmark selection
metrics.
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their response delay and sent to the controller. Based on the
received response delay, controller constructs the network
coordinates and selects the VDCs and allocates the resources
for each selected VDC.

To investigate the performance of our VDC selection
strategy, both Zhang’s landmark selection metrics [30]
and our proposed landmark selection metrics are applied
to landmark selection, and the VDC selection algorithms
of the adaptive cloudlet placement method (ACPM) [23],
tentacles [10] and our VDC selection (ICSP) are implemented
to the constructed network coordinate to determine the loca-
tion of selected VDCs and allocate the resources for each
selected VDC. Then, the VDC selection strategies of ICSP
and NetClust are applied to the 4-dimensional GNP network
coordinate and plane network coordinates constructed based
on Zhang’s landmark selection metrics. In addition, the end
user number and their corresponding response delays with 30
candidate VDCs in October 2015 are applied to another
experiment to evaluate the performance fluctuation affected
by the number of selected VDCs, whose number increases
from 1 to 25 with Step 1 in Algorithm 1.

B. PERFORMANCE VERIFICATION
In this section, the developed simulator is used to investi-
gate our VDC selection strategy and verify its performance,
including the landmark selection and VDC selection.

1) LANDMARK SELECTION
Similar to the work in [30], the directional relative error
is also used to verify the performance of our landmark
selection metrics, shown as Fig. 3(b). Fig. 3(b) compares
the directional relative error between our landmark selec-
tion metrics and Zhang’s landmark selection metrics. The
curve of NetClust5(4) means the directional relative error
curve of 5-land marks and 4-dimensional GNP network
coordinates, which is applied in NetClust. ICSP5(4) denotes
the directional relative error curve of 5 land marks with a
4-dimensional GNP network coordinate based on ourmetrics.
Similarly, the directional relative error of NetClust9(8),
NetClust3(2) and ICSP3(2) are achieved.

Fig. 3(b) shows that the accuracy of ICSP5(4) is worse
than that of NetClust9(8) but much better than that of
NetClust5(4). Although at a low relative error level, the accu-
racy of the ICSP5(4) is worse than that of NetClust9(8),
and when the relative error reaches 0.7, there is no dis-
tinct difference between them. Fig. 3(b) also shows that
the accuracy of NetClust5(4) is always much worse than
that of ICSP5(4). The accuracy of ICSP3(2) is not worse
than that of NetClust5(4) and much better than that of
NetClust3(2). When the value of relative error reaches
0.35, the accuracy of ICSP3(2) is higher than NetClust5(4).
Generally, NetClust5(4) shows that the measurement delay
of these 5 selected candidate VDCs is required to construct
a 4-dimensional GNP network coordinate, while ICSP3(2)
means that 3 selected candidate VDC measurement data
are used to construct a GNP plane network coordinate.

This means that the VDC selection strategy is carried out in
a 4-dimensional space for NetClust while applied to a plane
coordinate for our ICSP. Obviously, the network coordinate
constructed based on our landmark selection metrics reduces
both the computational and network probing cost while the
estimation accuracy is sustainable. It is feasible for our VDC
selection strategy to construct plane network coordinates by
applying our landmark selection metrics.

FIGURE 4. The relative error of different coordinate landmark selection
metrics. (a) VS. Construction time. (b) VS. CPU consumption.

Fig. 4 shows the resource consumption of different dimen-
sional GNP construction with the change of the end users,
including GNP construction time and the maximum occupied
RAM. In Fig. 4, the blue curve, green and red curves denote
the resource consumption of 8-dimensional, 4-dimensional
and plane GNP network coordinate construction, respec-
tively. Fig. 4(a) plots the curves of different dimensional
GNP construction times with the change of the end users,
and Fig. 4(b) shows that the maximum RAM consumption of
different dimensional network coordinate construction varies
with the change of end users. From Fig. 4(a), it is clear that the
construction time increases with the increasing dimensions of
theGNP. Fig. 4(a) shows that the 8-dimensional GNP requires
the most time to construct its network coordinate, while the
construction time consumption of the plane network coordi-
nate is the least. Fig. 4(b) shows that the maximum occupied
RAM of the 4-dimensional and plane GNP network coor-
dinate construction are similar to each other and much less
than that of the 8-dimensional GNP. Furthermore, Fig. 4(b)
shows that the maximum occupied RAM and construction
time of these three-dimensional network coordinates are no
more than 53MB and 0.7s, respectively, which means that
the network coordinate construction is not the key factor for
MSCBs to construct their ICSPs.

2) THE PERFORMANCES OF DIFFERENT
SELECTION ALGORITHMS
To investigate the performance of our VDC selection
algorithm, the VDC selection algorithms of NetClust, ICSP
and tentacles are applied to the same two network coordinate
systems, 4-dimensional and plane GNP network coordinate.

Fig. 5 illustrates the service quality performance of
NetClust, ICSP and tentacles with the change of the end users
and clusters number under different network coordinates. The
curve of NetClust5(4) shows the relationship between the
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FIGURE 5. The service quality performance of different VDC selection
strategies.

service performance and end users’ number (cluster number)
when the NetClust VDC selection strategy is applied to the
4-dimensional network coordinate. The curves of ICSP5(4)
and tentacles5(4) demonstrate that the service performance
fluctuates with the end users’ number (cluster number) when
our selection algorithm and the tentacles selection algorithm
are applied to the same network coordinate. Fig. 5(a) plots
the service delay curve for different end users when VDC
selection strategies of our ICSP and NetClust are applied to
the 4-dimensional network coordinate and the plane coor-
dinate. Fig. 5(b) shows the relationship between the ser-
vice delay of these three VDC selection algorithms and the
number of selected VDCs. The number of selected VDC
is 5 in Fig. 5(a), and the number of end users is 13, 577
in Fig. 5(b). From Fig. 5, it is clear that there is no significant
difference in service performance between our VDC selec-
tion strategy and the server placement strategy of NetClust,
and both service performances are much better than that of
tentacles. In addition, Fig. 5 also shows that for each VDC
selection strategy, the higher the dimension of the network
coordinate is, the smoother the service performance curve
is. Finally, the number of selected VDC has a much greater
impact on service performance than the number of users.
Fig. 5(a) shows that the average service delay fluctuates
from 42ms to 66ms for NetClust and ICSP, respectively, and
this value fluctuates within 77ms and 120mswhen the number
of end users increases from 1, 485 to 49, 545. However, this
value decreases from 140ms to less than 43ms for NetClust
and ICSP and 200ms to less than 100ms for tentacles,
in Fig. 5(b). Themain reason is that these three selection algo-
rithms allocate the resources for each selected VDC based
on its service scopes. This means that for one selected node,
no matter how many end users there are, the average service
delay of this selected node is unchanged when its service
scopes of centroid coordinate do not change. However, with
the selected VDC number increasing, the service scope of
each selected VDC decreases, which means that the average
service delay of each selected VDC decreases.

These experiments are repeated 10 times, and the average
value of the results is used to investigate the clustering
time and the maximum RAM occupation of these three
algorithms under different network coordinates, as shown
in Fig. 6 and 7. In Fig. 6, the curves of NetClust5(4),

FIGURE 6. The clustering performance of different VDC selection
strategies.

FIGURE 7. The RAM occupation performance of different VDC selection
strategies.

ICSP5(4) and tentacles5(4) plot that clustering elapsed time
fluctuates with end users’ number (cluster number) when
these three selection algorithms are applied to the same
4-dimensional network coordinate. Fig. 6(a) shows that the
clustering elapsed times of different selection strategies fluc-
tuate with different numbers of end users, while Fig. 6(b)
discloses the relationship between the selection strategies’
clustering elapsed time and the number of selected nodes.
To show the clustering elapsed time difference between
ICSP5(4) and ICSP 3(2), one small figure in Fig. 6(a)
and Fig. 6(b) are further plotted. Comparing Fig. 6(a) with
Fig. 6(b), it is clear that ICSP3(2) has the shortest elapsed
time to obtain VDCs, while NetClust5(4) has the longest
elapsed time under the same conditions. Fig. 6(a) shows that
the value of ICSP3(2) is lower than the others, while that of
NetClust5(4) is much larger than any others in the case of
the same number of end users. This rule holds in Fig. 6(b)
when the number of selected VDCs is the same. In addition,
it is clear that the clustering elapsed time of NetClust5(4)
and NetClust3(2) increases sharply with the number of end
users and the selected VDCs increasing in Fig. 6(a) and
Fig. 6(b). Different from the selection strategy of NetClust,
both tentacles and our selection are only positively related to
the number of end users. Fig. 6(a) shows that as the number
of end users increases, the value of the elapsed time increases
for both ICSP5(4) and ICSP3(2). However, in Fig. 6(b), it is
clear that this value of ICSP3(2), ICSP5(4), tentacles5(4) and
tentacles5(4) are almost invariant. The subfigure of Fig. 6(b)
further shows that this value of ICSP5(4) and ICSP3(2) fluc-
tuates within a small scale with increasing VDC number.

Fig. 7 illustrates the maximum RAM occupation of
NetClust, ICSP and tentacles with the change of the end users
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and clusters number under different network coordinates. The
curves of NetClust5(4), ICSP5(4) and tentacles5(4) show the
relationship between the maximum RAM occupation and
end user number (cluster number) when these three VDC
selection algorithms are applied to the 4-dimensional network
coordinate, while the curves of NetClust5(4), ICSP5(4) and
tentacles5(4) illustrate the maximum occupied RAM fluctua-
tion with the change in end users and the VDC number when
they are applied to the plane network coordinate. Fig. 7(a)
plots the maximum occupied RAM curve for different end
users when VDC selection strategies of our ICSP and
NetClust are applied to the 4-dimensional network coordi-
nate and the plane coordinate, respectively. Fig. 7(b) shows
the relationship between the maximum RAM occupation of
these three VDC selection algorithms and the number of
selected VDCs. Similar to Fig. 5, the number of selected
VDC is 5 in Fig. 7(a), and the number of end users is 13577
in Fig. 7(b). From Fig. 7, it is clear that there is no sig-
nificant difference in maximum RAM occupation among
these three selection algorithms when the VDC number is
fixed, while the dimension of the network coordinate may
significantly affect the maximum RAM occupation of VDC
selection algorithms when the number of end users is fixed.
Fig. 7(a) shows that the maximumRAMoccupation curves of
these three algorithms almost coincide. In Fig. 7(b), there are
two significantly different curves for different dimensions.
The maximum RAM occupation curves of each selection
algorithm for the 4-dimensional network coordinate are much
greater than those of the plane network coordinate. However,
for each type of network coordinate, there is no significant
difference in maximum RAM occupation among these three
selection algorithms.

Integrating the performance of the landmark selection
metrics and VDC selection algorithms, our solution has the
advantage of lower computing resource consumption due to
the lower complexity of our node selection algorithm and
suitable landmark selection metrics. The lower complexity
of our VDC selection algorithm also reduces the computing
resource consumption during the optimal VDC determina-
tion. At the same time, our landmark selection metrics allow
us to obtain enough accurate network information with fewer
dimensional network coordinates, further reducing the com-
puting resources consumption. Although the dimension of
the network coordinate is reduced to 2, the accuracy of our
proposed ICSP3(2) is higher than NetClust5(4), as shown
in Fig. 4. In addition, the results in Fig. 5 and Fig. 6 show
that although the average service delay of ICSP3(2) is slightly
lower than that of NetClust5(4), the elapsed time of ICSP3(2)
is much lower than that of NetClust5(4). Thus, our solution
can select the suitable VDCs from the whole network coordi-
nate by constructing a plane network coordinate and apply-
ing a lightweight VDC selection algorithm, which means
that our solution could be carried out online. Additionally,
controller monitors the ICSP operation and Internet environ-
ment. Whenever the starting of the VDC selection strategy
is triggered, for example, when there is an overload of one

VDC and/or a change of many end users, controller will start
our VDC selection strategy by sending the IP list of all end
users and other candidate VDCs to candidate VDCs. Thus,
our solution can adjust the change in the Internet environment
and its operation condition, which is a flexible solution for
micro- and small-content service companies to construct their
ICSP in a multicloud environment.

C. COMPUTING COMPLEXITY ANALYSIS OF
DIFFERENT STRATEGIES
Fig. 6 and 7 can be explained by the different time complex-
ities of these two VDC selection strategies. In our algorithm,
Step 1 has the time complexity of O(N 2

+ N ), Step 2 and
Step 3 have the time complexity of O(N ), so the time com-
plexity of obtaining the subcluster centroid isO(N 2). Cluster-
ing applies a hierarchical clustering algorithm, which is based
on fuzzy graph connectedness and has a time complexity
of O(N ) when the number of clusters is far smaller than
the number of end users (30 � 500). Regarding resource
allocation, Step 7 has a time complexity ofO(N ). Step 8maps
the network coordinate value of each selected VDC to its
corresponding IP. Step 9 parses these IPs to their candidate
clouds. Obviously, the time complexity of these two steps
is O(K ), where K is the cluster number. Thus, the time
complexity of resource allocation is O(K ). Therefore, the
complexity of our selection algorithms is O(N 2

+ N + K ),
the same as O(N 2). However, as mentioned in [9], the
computing complexity of our algorithm is O(N 2), while
this of NetClust is O(N 3), resulting in the elapsed time of
NetClust5(4) and NetClust3(2) being larger than ICSP5(4)
and ICSP3(2), respectively, when the number of end users and
the VDCs are the same. It also explains the phenomenon that
both the elapsed time of these two node selection strategies
are increasing as the number of end users increases. The
phenomenon that the elapsed time of the NetClust’s node
selection strategy is positively related to the number of VDCs
could be explained by incorrect selection of the initial nodes.
Their node selection algorithm is based on K-Means, whose
time complexity depends on the iteration number, the cluster
number and the end users’ number. Thus, incorrect selection
of the initial nodes may result in a sharp increase in the
iteration number, leading to an increase in the elapsed time.

In addition, our proposed landmark selection metrics are
also helpful in improving the performance of our VDC selec-
tion strategy. As mentioned in [30], the computing com-
plexity of landmarks’ coordinates construction is O(N 2D),
and each end host coordinates is O(ND), where D is the
dimensionality of network coordinate space and N is the end
users’ account. Thismeans that the computational complexity
of coordinate construction is the linear function of the number
of landmarks for a given host’s account. Fig. 3(b) shows that
the errors of ICSP5(4) and ICSP3(2) are similar to those of
NetClust9(8) and NetClust5(4), respectively and are much
smaller than the same number of landmarks selected by the
metrics of [30]. This means that to achieve a similar precision
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network information, our landmark selection metrics may
significantly reduce the elapsed time of network coordination
construction for the same hosts, as shown in Fig. 4. In addi-
tion to saving computing resources, our landmark selection
metrics are also helpful in reducing storage resources. Our
landmark selection metrics may achieve a similar error of
network coordination constructionwith fewer landmark num-
bers, resulting in the dimensionality of network coordinate
space constructed by our landmark selection metrics being
much fewer than that constructed by [30]. That is, for each
end user and candidate cloud, the resources used to store
its Internet information with our strategy are less than those
with NetClust. Because this network coordinate information
is the input of VDC selection algorithms to generate the
final placement strategy, our strategy can save the storage
resources of ISCP construction for MSCBs significantly.

VI. CONCLUSION
This paper aims to address the challenges of VDC selec-
tion from different geo-distributed clouds, which should be
implemented by micro- and small-content service companies
when they use these selected VDCs to construct their ICSPs.
To this end, a practical serviceVDC strategywas proposed for
ICSP construction in a multicloud environment. To avoid the
high time complexity of NetClust, three landmark selection
metrics were presented to significantly reduce the dimensions
of network coordinates without degrading accuracy, leading
to the sharp reduction of computing resource consumption
for the following network coordinate construction and VDC
selection. Then, a fast VDC selection algorithmwas designed
to reduce the computing resource consumption effectively
with the time complexity of O(N 2). The experimental results
show that our landmark selection metrics can reduce the
dimensions of network coordinates with assured accuracy.
The experimental results also demonstrate that our VDC
selection algorithm not only reduces the computing resources
assumption but also locates end users to ‘‘optimal’’ VDCs.
It is suitable for the scenario where micro and small compa-
nies construct their ICSPs by using other cloud resources.
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